skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sadeghi, Mohsen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Tactile sensing has been increasingly utilized in robot control of unknown objects to infer physical properties and optimize manipulation. However, there is limited understanding about the contribution of different sensory modalities during interactive perception in complex interaction both in robots and in humans. This study investigated the effect of visual and haptic information on humans’ exploratory interactions with a ‘cup of coffee’, an object with nonlinear internal dynamics. Subjects were instructed to rhythmically transport a virtual cup with a rolling ball inside between two targets at a specified frequency, using a robotic interface. The cup and targets were displayed on a screen, and force feedback from the cup-andball dynamics was provided via the robotic manipulandum. Subjects were encouraged to explore and prepare the dynamics by “shaking” the cup-and-ball system to find the best initial conditions prior to the task. Two groups of subjects received the full haptic feedback about the cup-and-ball movement during the task; however, for one group the ball movement was visually occluded. Visual information about the ball movement had two distinctive effects on the performance: it reduced preparation time needed to understand the dynamics and, importantly, it led to simpler, more linear input-output interactions between hand and object. The results highlight how visual and haptic information regarding nonlinear internal dynamics have distinct roles for the interactive perception of complex objects. 
    more » « less
  2. Abstract Humans are adept at a wide variety of motor skills, including the handling of complex objects and using tools. Advances to understand the control of voluntary goal-directed movements have focused on simple behaviors such as reaching, uncoupled to any additional object dynamics. Under these simplified conditions, basic elements of motor control, such as the roles of body mechanics, objective functions, and sensory feedback, have been characterized. However, these elements have mostly been examined in isolation, and the interactions between these elements have received less attention. This study examined a task with internal dynamics, inspired by the daily skill of transporting a cup of coffee, with additional expected or unexpected perturbations to probe the structure of the controller. Using optimal feedback control (OFC) as the basis, it proved necessary to endow the model of the body with mechanical impedance to generate the kinematic features observed in the human experimental data. The addition of mechanical impedance revealed that simulated movements were no longer sensitively dependent on the objective function, a highly debated cornerstone of optimal control. Further, feedforward replay of the control inputs was similarly successful in coping with perturbations as when feedback, or sensory information, was included. These findings suggest that when the control model incorporates a representation of the mechanical properties of the limb, that is, embodies its dynamics, the specific objective function and sensory feedback become less critical, and complex interactions with dynamic objects can be successfully managed. 
    more » « less